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Problem 1.34

Express the solution of the initial-value problem

x
d

dx

(
x
d

dx
− 1

)(
x
d

dx
− 2

)(
x
d

dx
− 3

)
y(x) = f(x), y(1) = y′(1) = y′′(1) = y′′′(1) = 0,

as an integral.

Solution

Because the differential operator acting on y is factored, we can solve the ODE by constructing
the corresponding system of first-order ODEs. Let(

x
d

dx
− 3

)
y = y1. (1)

Then the ODE simplifies to

x
d

dx

(
x
d

dx
− 1

)(
x
d

dx
− 2

)
y1 = f(x).

Let (
x
d

dx
− 2

)
y1 = y2 (2)

so that the ODE simplifies to

x
d

dx

(
x
d

dx
− 1

)
y2 = f(x).

Let (
x
d

dx
− 1

)
y2 = y3 (3)

so that the ODE simplifies to

x
d

dx
y3 = f(x).

Our aim now is to solve for y3, y2, and y1 successively and end up with a first-order equation for y
that we can solve relatively easily. The equation for y3 is straightforward to solve.

d

dx
y3 =

f(x)

x

Integrate both sides with respect to x.

y3(x) =

ˆ x f(r)

r
dr + C1

Now that we know y3, we can solve for y2. Plug the solution in to the right side of equation (3)
and expand the operator on the left side.

x
d

dx
y2 − y2 =

ˆ x f(r)

r
dr + C1

Divide both sides by x.
d

dx
y2 −

1

x
y2 =

1

x

ˆ x f(r)

r
dr +

C1

x
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This is a first-order inhomogeneous ODE that can be solved with an integrating factor.

I = e
´ x− 1

s
ds = e− lnx = elnx−1

= x−1

Multiply both sides of the equation by this integrating factor.

1

x

d

dx
y2 −

1

x2
y2 =

1

x2

ˆ x f(r)

r
dr +

C1

x2

The left side is exact and can be written as d/dx(Iy2) as a result of the product rule.

d

dx

(
1

x
y2

)
=

1

x2

ˆ x f(r)

r
dr +

C1

x2

Integrate both sides with respect to x.

1

x
y2 =

ˆ x 1

s2

ˆ s f(r)

r
dr ds− C1

x
+ C2

Multiply both sides by x to solve for y2.

y2(x) = x

ˆ x 1

s2

ˆ s f(r)

r
dr ds− C1 + C2x

Now that we know y2, we can solve for y1. Plug the solution in to the right side of equation (2)
and expand the operator on the left side.

x
d

dx
y1 − 2y1 = x

ˆ x 1

s2

ˆ s f(r)

r
dr ds− C1 + C2x

Divide both sides by x.

d

dx
y1 −

2

x
y1 =

ˆ x 1

s2

ˆ s f(r)

r
dr ds− C1

x
+ C2

This is a first-order inhomogeneous ODE that can be solved with an integrating factor.

I = e
´ x− 2

s
ds = e−2 lnx = elnx−2

= x−2

Multiply both sides of the equation by this integrating factor.

1

x2
d

dx
y1 −

2

x3
y1 =

1

x2

ˆ x 1

s2

ˆ s f(r)

r
dr ds− C1

x3
+

C2

x2

The left side is now exact and can be written as d/dx(Iy1) as a result of the product rule.

d

dx

(
1

x2
y1

)
=

1

x2

ˆ x 1

s2

ˆ s f(r)

r
dr ds− C1

x3
+

C2

x2

Integrate both sides with respect to x.

1

x2
y1 =

ˆ x 1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt+

C1

2x2
− C2

x
+ C3
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Multiply both sides by x2 to solve for y1.

y1(x) = x2
ˆ x 1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt+

C1

2
− xC2 + C3x

2

Now that we know y1, we can solve for y. Plug the solution in to the right side of equation (1)
and expand the operator on the left side.

x
d

dx
y − 3y = x2

ˆ x 1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt+

C1

2
− xC2 + C3x

2

Divide both sides by x.

d

dx
y − 3

x
y = x

ˆ x 1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt+

C1

2x
− C2 + C3x

This is a first-order inhomogeneous ODE that can be solved with an integrating factor.

I = e
´ x− 3

s
ds = e−3 lnx = elnx−3

= x−3

Multiply both sides of the equation by this integrating factor.

1

x3
d

dx
y − 3

x4
y =

1

x2

ˆ x 1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt+

C1

2x4
− C2

x3
+

C3

x2

The left side is now exact and can be written as d/dx(Iy1) as a result of the product rule.

d

dx

(
1

x3
y

)
=

1

x2

ˆ x 1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt+

C1

2x4
− C2

x3
+

C3

x2

Integrate both sides with respect to x.

1

x3
y =

ˆ x 1

u2

ˆ u 1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt du− C1

6x3
+

C2

2x2
− C3

x
+ C4

Multiply both sides of the equation by x3 to solve for y.

y(x) = x3
ˆ x 1

u2

ˆ u 1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt du− C1

6
+

C2x

2
− C3x

2 + C4x
3

Introduce new constants of integration, A, B, C, and D, to simplify the right side.

y(x) = x3
ˆ x 1

u2

ˆ u 1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt du+A+Bx+ Cx2 +Dx3

Now that we have found the general solution for y(x), we have to use the four initial conditions to
determine the four constants of integration. We’ll start with the first one, y(1) = 0. Set the lower
limit of the u-integral to be 1 so that the integral term vanishes when x = 1 is plugged in.

y(1) = A+B + C +D = 0 (4)

With the first initial condition applied, y(x) becomes

y(x) = x3
ˆ x

1

1

u2

ˆ u 1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt du+A+Bx+ Cx2 +Dx3.
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Take the first derivative of y to use the second initial condition, y′(1) = 0.

y′(x) = 3x2
ˆ x

1

1

u2

ˆ u 1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt du+ x3

1

x2

ˆ x 1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt

+B + 2Cx+ 3Dx2

Set the lower limit of the t-integral to be 1 so that the second integral term vanishes when x = 1
is plugged in.

y′(1) = B + 2C + 3D = 0 (5)

With the second initial condition applied, y′(x) becomes

y′(x) = 3x2
ˆ x

1

1

u2

ˆ u

1

1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt du+ x

ˆ x

1

1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt

+B + 2Cx+ 3Dx2.

Take the second derivative of y to use the third initial condition, y′′(1) = 0.

y′′(x) = 6x

ˆ x

1

1

u2

ˆ u

1

1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt du+ 3x2

1

x2

ˆ x

1

1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt

+

ˆ x

1

1

t2

ˆ t 1

s2

ˆ s f(r)

r
dr ds dt+ x

1

x2

ˆ x 1

s2

ˆ s f(r)

r
dr ds+ 2C + 6Dx

Set the lower limit of the s-integral to be 1 so that the fourth integral term vanishes when x = 1
is plugged in.

y′′(1) = 2C + 6D = 0 (6)

With the third initial condition applied, y′′(x) becomes

y′′(x) = 6x

ˆ x

1

1

u2

ˆ u

1

1

t2

ˆ t

1

1

s2

ˆ s f(r)

r
dr ds dt du+ 4

ˆ x

1

1

t2

ˆ t

1

1

s2

ˆ s f(r)

r
dr ds dt

+
1

x

ˆ x

1

1

s2

ˆ s f(r)

r
dr ds+ 2C + 6Dx.

Take the third derivative of y to use the fourth initial condition, y′′′(1) = 0.

y′′′(x) = 6

ˆ x

1

1

u2

ˆ u

1

1

t2

ˆ t

1

1

s2

ˆ s f(r)

r
dr ds dt du+ 6x

1

x2

ˆ x

1

1

t2

ˆ t

1

1

s2

ˆ s f(r)

r
dr ds dt

+ 4
1

x2

ˆ x

1

1

s2

ˆ s f(r)

r
dr ds

− 1

x2

ˆ x

1

1

s2

ˆ s f(r)

r
dr ds+

1

x

1

x2

ˆ x f(r)

r
dr + 6D

Set the lower limit of the r-integral to be 1 so that the fifth integral term vanishes when x = 1 is
plugged in.

y′′′(1) = 6D = 0 (7)

Solving equations (4), (5), (6), and (7) for the constants, we find that A = 0, B = 0, C = 0, and
D = 0. Therefore,

y(x) = x3
ˆ x

1

1

u2

ˆ u

1

1

t2

ˆ t

1

1

s2

ˆ s

1

f(r)

r
dr ds dt du.

www.stemjock.com


