Problem 1.34

Express the solution of the initial-value problem

$$
x \frac{d}{d x}\left(x \frac{d}{d x}-1\right)\left(x \frac{d}{d x}-2\right)\left(x \frac{d}{d x}-3\right) y(x)=f(x), \quad y(1)=y^{\prime}(1)=y^{\prime \prime}(1)=y^{\prime \prime \prime}(1)=0,
$$

as an integral.

Solution

Because the differential operator acting on y is factored, we can solve the ODE by constructing the corresponding system of first-order ODEs. Let

$$
\begin{equation*}
\left(x \frac{d}{d x}-3\right) y=y_{1} . \tag{1}
\end{equation*}
$$

Then the ODE simplifies to

$$
x \frac{d}{d x}\left(x \frac{d}{d x}-1\right)\left(x \frac{d}{d x}-2\right) y_{1}=f(x) .
$$

Let

$$
\begin{equation*}
\left(x \frac{d}{d x}-2\right) y_{1}=y_{2} \tag{2}
\end{equation*}
$$

so that the ODE simplifies to

$$
x \frac{d}{d x}\left(x \frac{d}{d x}-1\right) y_{2}=f(x) .
$$

Let

$$
\begin{equation*}
\left(x \frac{d}{d x}-1\right) y_{2}=y_{3} \tag{3}
\end{equation*}
$$

so that the ODE simplifies to

$$
x \frac{d}{d x} y_{3}=f(x) .
$$

Our aim now is to solve for y_{3}, y_{2}, and y_{1} successively and end up with a first-order equation for y that we can solve relatively easily. The equation for y_{3} is straightforward to solve.

$$
\frac{d}{d x} y_{3}=\frac{f(x)}{x}
$$

Integrate both sides with respect to x.

$$
y_{3}(x)=\int^{x} \frac{f(r)}{r} d r+C_{1}
$$

Now that we know y_{3}, we can solve for y_{2}. Plug the solution in to the right side of equation (3) and expand the operator on the left side.

$$
x \frac{d}{d x} y_{2}-y_{2}=\int^{x} \frac{f(r)}{r} d r+C_{1}
$$

Divide both sides by x.

$$
\frac{d}{d x} y_{2}-\frac{1}{x} y_{2}=\frac{1}{x} \int^{x} \frac{f(r)}{r} d r+\frac{C_{1}}{x}
$$

This is a first-order inhomogeneous ODE that can be solved with an integrating factor.

$$
I=e^{\int^{x}-\frac{1}{s} d s}=e^{-\ln x}=e^{\ln x^{-1}}=x^{-1}
$$

Multiply both sides of the equation by this integrating factor.

$$
\frac{1}{x} \frac{d}{d x} y_{2}-\frac{1}{x^{2}} y_{2}=\frac{1}{x^{2}} \int^{x} \frac{f(r)}{r} d r+\frac{C_{1}}{x^{2}}
$$

The left side is exact and can be written as $d / d x\left(I y_{2}\right)$ as a result of the product rule.

$$
\frac{d}{d x}\left(\frac{1}{x} y_{2}\right)=\frac{1}{x^{2}} \int^{x} \frac{f(r)}{r} d r+\frac{C_{1}}{x^{2}}
$$

Integrate both sides with respect to x.

$$
\frac{1}{x} y_{2}=\int^{x} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s-\frac{C_{1}}{x}+C_{2}
$$

Multiply both sides by x to solve for y_{2}.

$$
y_{2}(x)=x \int^{x} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s-C_{1}+C_{2} x
$$

Now that we know y_{2}, we can solve for y_{1}. Plug the solution in to the right side of equation (2) and expand the operator on the left side.

$$
x \frac{d}{d x} y_{1}-2 y_{1}=x \int^{x} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s-C_{1}+C_{2} x
$$

Divide both sides by x.

$$
\frac{d}{d x} y_{1}-\frac{2}{x} y_{1}=\int^{x} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s-\frac{C_{1}}{x}+C_{2}
$$

This is a first-order inhomogeneous ODE that can be solved with an integrating factor.

$$
I=e^{\int^{x}-\frac{2}{s} d s}=e^{-2 \ln x}=e^{\ln x^{-2}}=x^{-2}
$$

Multiply both sides of the equation by this integrating factor.

$$
\frac{1}{x^{2}} \frac{d}{d x} y_{1}-\frac{2}{x^{3}} y_{1}=\frac{1}{x^{2}} \int^{x} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s-\frac{C_{1}}{x^{3}}+\frac{C_{2}}{x^{2}}
$$

The left side is now exact and can be written as $d / d x\left(I y_{1}\right)$ as a result of the product rule.

$$
\frac{d}{d x}\left(\frac{1}{x^{2}} y_{1}\right)=\frac{1}{x^{2}} \int^{x} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s-\frac{C_{1}}{x^{3}}+\frac{C_{2}}{x^{2}}
$$

Integrate both sides with respect to x.

$$
\frac{1}{x^{2}} y_{1}=\int^{x} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t+\frac{C_{1}}{2 x^{2}}-\frac{C_{2}}{x}+C_{3}
$$

Multiply both sides by x^{2} to solve for y_{1}.

$$
y_{1}(x)=x^{2} \int^{x} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t+\frac{C_{1}}{2}-x C_{2}+C_{3} x^{2}
$$

Now that we know y_{1}, we can solve for y. Plug the solution in to the right side of equation (1) and expand the operator on the left side.

$$
x \frac{d}{d x} y-3 y=x^{2} \int^{x} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t+\frac{C_{1}}{2}-x C_{2}+C_{3} x^{2}
$$

Divide both sides by x.

$$
\frac{d}{d x} y-\frac{3}{x} y=x \int^{x} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t+\frac{C_{1}}{2 x}-C_{2}+C_{3} x
$$

This is a first-order inhomogeneous ODE that can be solved with an integrating factor.

$$
I=e^{\int^{x}-\frac{3}{s} d s}=e^{-3 \ln x}=e^{\ln x^{-3}}=x^{-3}
$$

Multiply both sides of the equation by this integrating factor.

$$
\frac{1}{x^{3}} \frac{d}{d x} y-\frac{3}{x^{4}} y=\frac{1}{x^{2}} \int^{x} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t+\frac{C_{1}}{2 x^{4}}-\frac{C_{2}}{x^{3}}+\frac{C_{3}}{x^{2}}
$$

The left side is now exact and can be written as $d / d x\left(I y_{1}\right)$ as a result of the product rule.

$$
\frac{d}{d x}\left(\frac{1}{x^{3}} y\right)=\frac{1}{x^{2}} \int^{x} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t+\frac{C_{1}}{2 x^{4}}-\frac{C_{2}}{x^{3}}+\frac{C_{3}}{x^{2}}
$$

Integrate both sides with respect to x.

$$
\frac{1}{x^{3}} y=\int^{x} \frac{1}{u^{2}} \int^{u} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t d u-\frac{C_{1}}{6 x^{3}}+\frac{C_{2}}{2 x^{2}}-\frac{C_{3}}{x}+C_{4}
$$

Multiply both sides of the equation by x^{3} to solve for y.

$$
y(x)=x^{3} \int^{x} \frac{1}{u^{2}} \int^{u} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t d u-\frac{C_{1}}{6}+\frac{C_{2} x}{2}-C_{3} x^{2}+C_{4} x^{3}
$$

Introduce new constants of integration, A, B, C, and D, to simplify the right side.

$$
y(x)=x^{3} \int^{x} \frac{1}{u^{2}} \int^{u} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t d u+A+B x+C x^{2}+D x^{3}
$$

Now that we have found the general solution for $y(x)$, we have to use the four initial conditions to determine the four constants of integration. We'll start with the first one, $y(1)=0$. Set the lower limit of the u-integral to be 1 so that the integral term vanishes when $x=1$ is plugged in.

$$
\begin{equation*}
y(1)=A+B+C+D=0 \tag{4}
\end{equation*}
$$

With the first initial condition applied, $y(x)$ becomes

$$
y(x)=x^{3} \int_{1}^{x} \frac{1}{u^{2}} \int^{u} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t d u+A+B x+C x^{2}+D x^{3} .
$$

Take the first derivative of y to use the second initial condition, $y^{\prime}(1)=0$.

$$
\begin{array}{r}
y^{\prime}(x)=3 x^{2} \int_{1}^{x} \frac{1}{u^{2}} \int^{u} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t d u+x^{3} \frac{1}{x^{2}} \int^{x} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t \\
\\
+B+2 C x+3 D x^{2}
\end{array}
$$

Set the lower limit of the t-integral to be 1 so that the second integral term vanishes when $x=1$ is plugged in.

$$
\begin{equation*}
y^{\prime}(1)=B+2 C+3 D=0 \tag{5}
\end{equation*}
$$

With the second initial condition applied, $y^{\prime}(x)$ becomes

$$
\begin{array}{r}
y^{\prime}(x)=3 x^{2} \int_{1}^{x} \frac{1}{u^{2}} \int_{1}^{u} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t d u+x \int_{1}^{x} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t \\
+B+2 C x+3 D x^{2} .
\end{array}
$$

Take the second derivative of y to use the third initial condition, $y^{\prime \prime}(1)=0$.

$$
\begin{aligned}
y^{\prime \prime}(x)=6 x \int_{1}^{x} \frac{1}{u^{2}} \int_{1}^{u} & \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t d u+3 x^{2} \frac{1}{x^{2}} \int_{1}^{x} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t \\
& +\int_{1}^{x} \frac{1}{t^{2}} \int^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t+x \frac{1}{x^{2}} \int^{x} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s+2 C+6 D x
\end{aligned}
$$

Set the lower limit of the s-integral to be 1 so that the fourth integral term vanishes when $x=1$ is plugged in.

$$
\begin{equation*}
y^{\prime \prime}(1)=2 C+6 D=0 \tag{6}
\end{equation*}
$$

With the third initial condition applied, $y^{\prime \prime}(x)$ becomes

$$
\begin{aligned}
& y^{\prime \prime}(x)=6 x \int_{1}^{x} \frac{1}{u^{2}} \int_{1}^{u} \frac{1}{t^{2}} \int_{1}^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t d u+4 \int_{1}^{x} \frac{1}{t^{2}} \int_{1}^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t \\
&+\frac{1}{x} \int_{1}^{x} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s+2 C+6 D x .
\end{aligned}
$$

Take the third derivative of y to use the fourth initial condition, $y^{\prime \prime \prime}(1)=0$.

$$
\begin{aligned}
y^{\prime \prime \prime}(x)=6 \int_{1}^{x} \frac{1}{u^{2}} \int_{1}^{u} \frac{1}{t^{2}} \int_{1}^{t} \frac{1}{s^{2}} \int^{s} & \frac{f(r)}{r} d r d s d t d u+6 x \frac{1}{x^{2}} \int_{1}^{x} \frac{1}{t^{2}} \int_{1}^{t} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s d t \\
& +4 \frac{1}{x^{2}} \int_{1}^{x} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s \\
& -\frac{1}{x^{2}} \int_{1}^{x} \frac{1}{s^{2}} \int^{s} \frac{f(r)}{r} d r d s+\frac{1}{x} \frac{1}{x^{2}} \int^{x} \frac{f(r)}{r} d r+6 D
\end{aligned}
$$

Set the lower limit of the r-integral to be 1 so that the fifth integral term vanishes when $x=1$ is plugged in.

$$
\begin{equation*}
y^{\prime \prime \prime}(1)=6 D=0 \tag{7}
\end{equation*}
$$

Solving equations (4), (5), (6), and (7) for the constants, we find that $A=0, B=0, C=0$, and $D=0$. Therefore,

$$
y(x)=x^{3} \int_{1}^{x} \frac{1}{u^{2}} \int_{1}^{u} \frac{1}{t^{2}} \int_{1}^{t} \frac{1}{s^{2}} \int_{1}^{s} \frac{f(r)}{r} d r d s d t d u
$$

